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SUMMARY

The APD preamplifier developed by Muoi of PlessCor [1] was fully tested

and then incorporated into the 50 Mbps Q--4 PPM receiver reported in [2]. An

optical fiber was used to couple the optical signal onto the active surface of the

APD, which enabled direct measurement of the optical signal power received by

the APD. The 50 Mbps Q-_4 PPM receiver with this APD preamplifier achieved

a receiver BER of 10 -s at a received optical signal power level which

corresponded to 36 detected photons per bit, or 0.56nW in average received opti-

cal signal power.
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1. Introduction

Free space optical communication systems require the receiver to be

extremely sensitive because of the great distance between satellites. Silicon

avalanche photodiodes (APD) can provide the maximum receiver sensitivity

because of its internal multication gain. The receiver sensitivity is also limited

by the additive thermal noise from the APD preamplifier. This work was to test

a custom designed low noise APD preamplifier which had been used in a 325

Mbps NRZ binary OOK optical communication system and had, in 1987,

achieved a record receiver sensitivity of 64 detected signal photons per bit under

a bit error rate (BER) of 10 -6 [1][3]. We used this APD preamplifier module in

our 50 Mbps Q=4 pulse position modulation (PPM) receiver [2] and the resul-

tant receiver sensitivity increased from 50 detected signal photons per bit [2] to

38 detected signal photons per bit at BER _10 -6.

A transimpedance amplifier is usually used as the preamplifier with the

feedback resistor as the APD load resistor. It can be shown that the spectral

density of the current noise which adds to the APD photocurrent is inversely

proportional to the feedback resistance. However, the bandwidth of the

preamplifier is also approximately equal to reciprocal of the product of the feed-

back resistance and the shunt capacitance. The major limiting factor to achieve

both low noise and wide bandwidth operation is the parasitic shunt capacitance

across the feedback resistor which may be reduced by hybrid or integrated cir-

cuit technologies.

The APD preamplifier module being tested was made by Dr. Tran Van

Muoi of PlessCor Optronics, Inc. It consisted of a low noise APD mounted on a

ceramic subcarrier block and a hybrid circuit transimpedance amplifier all in one

RF shielded package. The feedback resistance was 5 _ and the 3 dB band
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width was 220 MHz. The APD ionization coefficient ratio was measured to be

key/ ==0.008 [1]. This preamplifier was superior to the one we originally used in

our 50 Mbps Q_4 PPM receiver which had a feedback resistance of 1.03 KFI

and a 3 dB band width of 440 lv[[-Iz. The APDs in both module were about the

same. Since the 50 Mbps Q_-_4 PPM receiver required a front end band width of

only 200 MHz, the PlessCor APD preamplifier could be substituted and the

receiver sensitivity should improve.

Since the APD active surface was about 1 mm back in a small hole on the

package, it was difficult to focus the optical signal beam onto the APD active

surface and actually measure the total optical power seen by the APD. The

method used originally by Muoi was monitoring the APD bias current while

lowering the bias voltage to 10 volts [1]. This measurement method might have

been inaccurate since it effectively used the APD itself as the optical power

meter. An APD at such a low bias voltage was not fully depleted and the quan-

tum efficiency became lower. On the other hand, the APD gain was not neces-

sarily reduce to unity at such a low bias voltage. The measurement result was

also affected by the drift of the leakage current of the APD and the biasing cir-

cuit. In order to independently and accurately measure the received optical

power by the APD, we used a short optical fiber to couple the optical signal to

the APD and held the fiber tip as close to the APD active surface as possible.

The received optical power could be measured directly by placing the fiber tip in

front of an independently calibrated commercial optical power meter.

The details of the measurement of the APD preamplifier parameters is

presented in the next section. The measurement results with the 50 Mbps Q_4

Pl:;_¢I receiver is given in Section 3. Section 4 contains some conclusion remarks.
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2. Measurement of the APD Preamplifier Parameters

The test setup is shown in Figure 1. The optical fiber used consisted of a

two feet plastic optical fiber guide (Fiberguide Industries SFS50/125Y). The

diameter of the core was C/ib--50#m and the numerical aperture was

NA_0.22=£-0.02. The diameter of the APD was CA/'D-----500#m. The spot size of

the signal beam on the surface the APD can be computed as ¢_.g =2NA XL +¢/ib

with L the distance from the fiber tip to the APD surface. Therefore, the APD

could capture all the light from the fiber tip as long as CMg'_<¢APD, or

L <<lmm. A digital multimeter (DMM) (Fluke 75) and an electrometer (Keith-

ley 617) were used to monitor the APD bias voltage and current. The signal

from the preamplifier had to be amplified by another amplifier (MiniCircuit

ZFL-10OOLN, 0.1-1000MHz, 23.4dB) in order for the PPM receiver to operate

properly. Since the output of the preamplifier is inverted, a two way 180"

power splitter (MiniCircuit ZFSCJ-2-1) was used to invert the signal again.

Figure 2 is a copy of the schematic circuit diagram of the preamplifier [1].

The front end of the preamplifier consisted of a GaAs MESFET (NE71000). The

feedback resistor was R 7---5K_1. The signal was actually AC coupled due to the

capacitor, C3.

The frequency response of the APD preamplifier module was first measured

by biasing the APD close to its break down point and illuminating the APD

with CW light (white noise). Figure 3 shows the measured spectral density out-

put from the MiniCircuit amplifier. It shows the preamplifier had a 3 dB band

width of about 220 MHz, as reported in [1].

Next, the total dark current (bias current) was measured as a function of

the bias voltage under no incident light. The results are plotted in Figure 4. It

is noticed that the total measured dark current included both the APD dark
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current and the leakagecurrent of the bypasscapacitor, CI. The leakage current

drifted slowly by about 15% as the temperature drifted.

The bias voltage was then fixed at 10 volts and the bias current was meas-

ured as a function of the received optical power. The laser transmitter in this

measurement was modulated by the 50 Mbps Q=4 PPM encoder. Table 1 lists

the measurement results along with the theoretical value (third column) assum-

ing the APD gain equal to unity and the quantum efficiency equal to 80% as

Muoi claimed in [1]. The ratio of the measured and the theoretical values are

also listed in the fourth column of Table 1. It is seen that the APD biased at 10

volts did not have a unity gain and 80% quantum efficiency as Muoi claimed, at

least for 50 Mops Q=4 PPM signal. If we had measured the received optical

power by monitoring the bias current as Muoi did, we would have overestimated

the received optical signal power by as much as 80% based on the data shown in

Table 1. It might have been possible that the method used by Muoi caused less

error for the 325 Mbps NRZ binary OOK signal. The measurement method we

used with the optical fiber was much more reliable and accurate than Muoi's

method.

The equivalent input noise current spectral density of the preamplifier was

determined by measuring the power spectrum of the noise output from the Mini-

Circuit amplifier while biasing the APD at 10 volts. The contribution from the

APD could be neglected since the APD gain was sufficiently low. The measured

average power spectral density was -123 dBm/Hz. The equivalent noise current

density can be computed as

.O

d < :n'>

-- df

measured power density X 5012/(transimpedanee gain) 2
amplifier gain

= (2.14 pA/'k/Hz) 2 . (1)
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The APD bulk leakagecurrent was estimated by increasingthe APD gain

until the total noise output from the amplifier rose to above the noise floor of

the preamplifier itself. The measuredpower spectral density due to the APD

bulk leakage current was about -132 dBm/Hz. The corresponding APD bulk

leakage current can beobtained by solving the equation

R?
2qFa2Ibu_ X5--_ X amp gain = 132 dBrn/Hz (2)

where q is the electron charge, G is the average APD gain, F is the APD excess

noise factor, Ib,tk is the APD bulk leakage current, and Rf is the feedback resis-

tance of the transimpedance preamplifier. The APD gain was obtained by

measuring the pulse amplitude output from the preamplifier in response to a

pulsed incident optical signal.

solving the equation

where Vkp

The value of the APD gain can be determined by

^  Pvk
Vpk= (3)

is the measured pulse amplitude output from the preamplifier, r/ is

the APD quantum efficiency, Pspk is the received peak optical power, and hf is

the photon energy. The APD gain was found to be G--_--540 and the APD exc_

noise factor was F=GKef f +(2--1/G)(1--keff) _ 6.32. The APD bulk leakage

current was then Ibugc----0.98 pA according to (2). Although the APD surface

leakage current could not be measured, its contribution to the total noise could

be neglected.

It is noticed that the measurement results reported in this section were only

rough estimates. We assumed the noise spectral density was constant and used

a I_F spectrum analyzer to measure the average noise density. In practice, the

noise spectrum was not constant and fluctuated over the frequency range.



-7-

Furthermore, the measurednoise spectral noisedensities were closeto the noise

floor of the spectrum analyzer.

3. Use of the A_PD Preamplifier in the SO M'bps Q--4 PPM Receiver

The receiver BER of the 50 Mbps Q_4 PPM receiver was measured as a

function of the received optical signal level in terms of number of detected signal

photons per information bit defined a_

r/P_ T_
Photons / bit -- (4)

hf

with Par the measured average optical power and Tw----4Ons the PPM word

interval. Figure 5 shows the measurement results. The APD gain was optimized

near BER _10 -8, by adjusting the APD bias voltage until the receiver BER was

minimized for a fixed received optical signal level. The value of the optimal

APD gain was measured to be G---310 using the method described in the previ-

ous section. Figure 5 shows that the receiver with this APD preamplifier

achieved a receiver BER of 10 -8 at 36 detected signal photons per bit (0.58nW

or -62.5d.Bm). The theoretically predicted value of the optimal APD gain was

G--250 based on the APD and preamplifier parameters extracted in the previous

section. Figure 5 also shows the the theoretically predicted receiver BER vs.

photons per bit which was computed using the algorithm described in [4]. The

measured data was close to that predicted by the theory. Unfortunately, the

APD active surface was damaged after this set of measurement due to the occa-

sional contact by the optical fiber tip. There was no protective glass window in

froht of the APD active surface.
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4. Discussions

The custom designed APD preamplifier was shown to have an equivalent

input noise current density of 2.14 pA/_/Hz as compared to 7.TpA/X/_Iz for the

preamplifier we originally used in our 50

bandwidth of the preamplifier was found

sufficient for the 50 Mbps Q--4 PPM signal.

Mbps Q_4 PPM receiver. The

to be 220 M:Hz which was just

The APD contained in the APD

preamplifier module was similar to the one we originally used except for a larger

bulk leakage current, 0.98 pA as compared to 0.10 pA. The overall receiver sen-

sitivity when using the custom designed APD preamplifier module was improved

by about 1.4 dB, to 36 detected signal photons per bit at BER _10 -6. The best

receiver performance reported so far for similar systems was 39 photons per bit

which was achieved by using a state-of-the-art APD (Slik APD, ke//=0.005 [5]).

Our receiver sensitivity is expected to further improve if we use a Slik APD with

the custom designed preamplifier.

We have used an optical fiber to couple the optical signal to the APD,

which provided a direct and reliable way to measure the received optical signal

power. The method used by Muoi in which the APD itself was used as an opti-

cal power meter was shown to be very unreliable.

The electrical bandwidth of this APD preamplifier is not sufficient for

higher data rate Q_---4 PPM receivers, for example, 220 Mbps or 325 Mbps.

However, GaAs trausimpedance amplifiers commercially available today can have

similar spectral noise current density but a much wide bandwidth (e.g. GigaBit

Logic 16G071-30L1, 700 M:Hz, 3.0pA/%/Hz [6]). A Slik APD and an integrated

circuit GaAs tran_impedance amplifier, such as GigaBit Logic 16G071 or 16G072,

should be used in a high data rate Q_4 PPM receiver (e-g- 220 Mbps) in order

to achieve the highest receiver sensitivity.
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Pi. I,.._,._. Ith.o_y Im._,.. / Ith.o,_

5.0nW

6.0nW

52.6nW

53.6nW

429nW

434nW

450nW

3.9#W

30#W

5hA

5hA

48hA

37.3n.A

352nA

315hA

400hA

3.5#A

28.s_

2.65nA

3.18nA

27.9nA

28.4nA

227n_&

230n_k

238nA

2.07_

15.9/,u_

1.89

1.57

1.72

1.31

1.55

1.47

1.68

1.69

1.80

Table 1. Measured APD photocurrent, Imeas_red, as a function of the

average received power, Pin, of the 50 Mbps Q-----4 PPM optical signal.
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Q_ 4 PPM Signaling
MBPS NBG EXTR

50. 0.000 0.100E+07

APDgain Photons/bit
300. 15

300. 17

300. 19

300. 21

300. 23

300. 25

300. 27

300. 29

300. 31

300. 33

30O. 35

300. 37

300. 39

300. 41

300. 43

300. 45

300. 47

300. 49

300. 51

300. 53

300. 55

300. 57

300. 59

300. 61

300. 63

300. 65

KEFF IS

0.008 0.15E-07

Pav(nW)
0.227

0.257

0.287

0.318

0.348

0.378

0.408

0.439

0.469

0.499

0.529

0.560

0.590

0.620

0 650

0 681

0 711

0 741

0 772

0 802

0.832

0.862

0.893

0.923

0. 953

0.983

IB

0.98E-12

BER

0.1325E-02

0.4424E-03

0.1494E-03

0.5267E-04

0.2008E-04

0.8488E-05

0.3979E-05

0.2025E-05

0.I090E-05

0.6065E-06

0.3443E-06

0.1978E-06

0.I147E-06

0.6677E-07

0.3912E-07

0.2291E-07

0.1353E-07

0.8011E-08

0.4683E-08

0.2790E-08

0.1666E-08

0.9364E-09

0.5620E-09

0.3379E-09

0.2035E-09

0.9725E-I0

RLOAD
5000.

NTEMP

415.
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Performance of Q-ary PPM receiver

under Additive White Gaussian Noise

1. Introduction

One way to test the circuit of a Q-ary PPM receiver in an optical intersatel-

lite link is to measure the receiver performance under a known injected additive

white Gaussian noise (AWGN). It is only an indirect test since the shot noise gen-

erated by a photodetector is not additive but multiplicative. The receiver perfor-

mance will be different under different type of noises. Nevertheless, we can still

test if the circuit behaves as expected in the case of AWGN injection.

If we assume the receiver to be tested does not include the photodetector and

the preamplifier, the input signal level is normally relatively high and the thermal

noise of the circuit itself should be negligible. However, there may be some other

noise sources, such as timing misalignment or jitter, which may affect the receiver

performance. The effect of these noise source can be determined by comparing the

measured receiver performance to the theoretically predicted performance of an

ideal receiver under the same amount of injected AWGN. The degradation of the

receiver performance due to noises other than the injected can then be assessed.

The receiver circuit may cause about the same amount of degradation when it is

used with a photodetector.

The rest of this memo gives a theoretical performance analysis of an ideal

receiver under AWGN injection.
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2. BER vs. SNR when using ML detection

ML detection is to compare the receiver output at the end of each slot within

a PPM word to find the largest.

rate (WER) by [1]

The receiver BER is related to PPM word error

BER -- Q X WER (1)
2(Q-l)

The signal output from a matched filter is a Gaussian r.v. and the mean and vari-

ance are given by [2]

E, pulse presentIot ---- O, pulse absent (2)

o3 = "k/NoE /2 (3)

where E-- pulse energy, and N O=- one sided noise spectral density. It can be

shown that [2]

WERML = 1 --

e_ z +(2E/N0 )1/2

f l___e_Z2/2 [ f 1 e__2/2du]Q_ldz (4)

The relative accuracy required for the integral in (4) is impractical since we are

only interested in small value of WERML and the integral in (4) is very close to

unity. We may rewrite (4), to a good approximation, as

WERML _(Q-1)f 1--.:-_e-Z2/2 [ f :_7---27re-U2/2duldz
-o_ V271" z+(2E/N,)I/, 27r

Q-1
O0

(5)

Y

where erfc (v)=(2/X/"_'r)fe-':dv is the complimentary error function.
--v 0
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3. BER vs. E/N sub o when using threshold crossing detection

Threshold crossing detection is to compare the signal output

matched filter against a threshold at the end of each PPM slot.

WERth = 1 --(1--Pfa)Q-l(1--Pm,) "_ Pros+ (Q-1)Pfa

th oo

= f Pl(X) dx + (Q-1)fpo(x)dx
-co th

Optimal threshold is the solution to:

dWERth
-0 --_ pl(thopt) --- (Q-1)po(thopt)

dth

It can be shown that

E No

tho#= -_ + --_--ln(Q-1)-- E[14 12E/N ° In(Q-l)]

from the

(6)

(7)

and

2E/No
ln(Q-1)] }

1+ (Q-1)2 erfc{ _ [14 2E/N ° .In(Q-I)] }.

ff we fix the threshold to th =E/2, then Pms----Pfa and

- X/_I2No

WERt_ = QP,n, = Q f
--co

(8)

-"/2dz = -_erfc(2_f-E/No). (0)

4. Numerical results

A computer program was written to evaluate (5), (8), and (9) assuming Q--4

PPM signal format. The results and the computer program used are given as the

attached.
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6.051e-01

5.701e-01

5.342e-01

4.978e-01

4.609e-01

4.238e-01

3.867e-01

3.499e-01

3.136e-01

2.781e-01

2.438e-01

2.110e-Ol

1.801e-Ol

1.512e-01

1.248e-01

1.009e-01

7.989e-02

6.170e-02

4.636e-02

3.380e-02

2.381e-02

1.615e-02

1.049e-02

6.503e-03

3.820e-03

2.114e-03

1.094e-03

5.256e-04

2.321e-04

9.331e-05

3.375e-05

1.085e-05

3.055e-06

7.412e-07

1.523e-07

2.594e-08

3.585e-09

3.915e-i0

3.285e-ii

2.050e-12



#include <stdio.h>
#include <math.h>

#define Q 4

float qtrap(), trapzd(), pr() ;
static double rtsnr;

main()
[
int i;

double snr0, snrl, dsnr, snr, rsnr ;

float BERml, WERml, BERth, WERth, BERoth, WERoth ;

printf("SNR from ? to ? (dB)\n");

scanf("%if", &snr0 );

scanf("%if", &snrl );

dsnr = (snrl-snr0)/40.0;

for( i=0; i<=40; ++i )

[
snr = snr0 + i*dsnr ;

rsnr = exp( snr/10.0 * log(10.0) );

rtsnr = sqrt(rsnr);

WERmI= I/sqrt(M_PI) * (Q-I)/2.0 * qtrap( pr, -i0.0, i0.0);

BERmI=Q/2.0/(Q-I)*WERml;

WERoth = 0.5 * erfc(0.5*rtsnr*(l.0-1og(3.0)/2.0/rsnr) )

+ (Q-l) * 0.5 * erfc(0.5*rtsnr*(l.O+log(3.0)/2.0/rsnr) );

BERoth=Q/2.0/(Q-I)*WERoth;

WERth = Q * 0.5 * erfc( 0.5*rtsnr );

BERth=Q/2.0/(Q-I)*WERth;

printf("%8.2f %10.4f %15.3e %15.3e %15.3e \n",
snr, rsnr, BERml, BERoth, BERth );

/* The integrand */

float pr(u)

double u ;

[
return exp( -u*u ) * erfc( u + rtsnr ) ;

}



#include <math.h>

#include <stdio.h>

#define EPS 1.0e-3

#define JMAX 20

float qtrap(func,a,b)

float a,b;

float (*func)();

[
int j;

float s,olds,trapzd();

void nrerror();

olds = -i.0e30;

for (j=I;j<=JMAX;j++) [

s=trapzd(func,a,b,j);

if (fabs(s-olds) < EPS*fabs(olds)) return s;

olds=s;

}
nrerror("Too many steps in routine QTRAP");

#undef EPS

#undef JMAX

void nrerror(error_text)

char error text[];

[
void exit();

fprintf(stderr,"Numerical Recipes run-time error...\n");

fprintf(stderr,"%s\n",error_text);

fprintf(stderr,"...now exiting to system...\n");

exit(l);



#define FUNC(x) ((*func)(x))

float trapzd(func,a,b,n)
float a,b;
float (*func)(); /* ANSI: float (*func)(float); */

int n;

[
float x,tnm, sum, del;

static float s;

static int it;

int j;

if (n == i) [

it=l;

return (s=0.5*(b-a)*(FUNC(a)+FUNC(b)));

} else [
tnm=it;

del=(b-a)/tnm;

x=a+0.5*del;

for (sum=O.O,j=l;j<=it;j++,x +=del) sum += FUNC(x);

it *= 2;

s=0.5*(s+(b-a)*sum/tnm);

return s;



Use of a Bessel Lowpass Filter
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Direct detection free space optical communication systems are now being

developed as the first generation optical intersatellite links. Quarternary pulse

position modulation (QPPM) format is preferred because of the relatively simple

maximum likelihood detection circuit, higher receiver sensitivity, and constant

laser duty cycle. A maximum likelihood QPPM receiver contains a filter which

integrates received signal over each QPPM time slot. The receiver frontend electr-

ical bandwidth has to be at least four times the source binary data rate in order

to give a satisfactory receiver performance. It has been shown that a raised cosine

filter may be substituted for the integrator to reduce the receiver frontend

bandwidth to no more than two times the source binary data rate. The penalty in

receiver sensitivity when using a raised cosine filter is only about 0.5 dB in terms

of the input optical signal power required to achieve a bit error rate (BER) of

10 -6. A complete theoretical analysis of the receiver performance when using a

raised cosine filter can be found in [1].

A raised cosine filter with trapezoidal input pulses is in fact a type of lowpass

filter which has a linear phase response. The frequency response of a raised filter

with fl-----1 is especially close to that of an ordinary lowpass filter [1]. One can cir-

cumvent the difficulties in the analytical derivation of the exact raised cosine filter

by using a lowpass filter with similar frequency response. A Bessel lowpass filter

can be used as an approximate raised cosine filter since Bessel filters give max-

irfi'um flat phase delay [2]. Other type of well known Iowpass filters such as

Butterworth and Chebychev filters are not considered here since they tend to have

very nonlinear phase responses near the cutoff frequency. A Bessel lowpass filter
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can be implemented as a ladder network of capacitors and inductors [2]. The

number of capacitors and inductors required and their values can be determined

via table look-up once the order and the 3 dB cutoff frequency of the filter are

known.

A computer program was written to find the optimal values of the order and

the 3 dB cutoff frequency of the Bessel lowpass filter. The program was written in

LabView by National Instrument, Austin, Texas, and the computer used was a

McIntosh IIci. The LabView software contains a library of filter subroutines

including Bessel lowpass filters. The program can simulate the filter output for

any given input pulse shape through digital signal processing. The optimal values

of the order and 3 dB cutoff frequency of the Bessel lowpass filter are such that

the simulated output is the closest to the exact raised cosine pulse shape. The

input to the Bessel lowpass filter being designed consists of either computer gen-

erated rectangular pulses or actual pulses output from the photodetector

preamplifier acquired via an IEEE-488 bus.

A detailed block diagram of the program is shown in Figure 1. The actual

pulses is first displayed on a digitizing oscilloscope (Tektronic 11402) which is

used as a waveform digitizer. The displayed waveform is then sent to the com-

puter via an IEEE-488 interfacing bus. This part of the program has been suc-

cessfully tested but not yet integrated into the main program at this time. The

results described in this report were obtained using the computer generated rec-

tangular pulse shapes. The computer generated rectangular waveform is first

passed through a RC lowpass filter which simulates the preamplifier and then a

RC highpass filter which simulates the AC coupling between the amplifiers at the

front end of the receiver.

The program used the normalized time scale, i.e., assuming the input pul-

sewidth is one second. The results could be scaled down to the actual time scale.

The number of samples per pulsewidth was set to 200. The rise and fall times of

the__ rectangular pulses were 20% of the pulsewidth. The preamplifier 3 dB

bandwidth was equal to the reciprocal of the pulsewidth. A printout of the pro-

gram is shown in Figure 2.
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In general, the higher the order of the Bessel lowpass filter, the more sym-

metric the output pulse shape. The higher the 3 dB cutoff frequency, the nar-

rower the output pulse shape. However, the order and the 3 dB cutoff frequency of

the filter should be kept minimum in order to simplify the filter design. It was

found from the simulation that the filter which gives satisfactory raised cosine

output pulse shape should be a seventh order Bessel lowpass filter with a 3 dB

cutoff frequency equal to 1.3 times reciprocal of the pulsewidth. For the FSDD

receiver which uses 325 Mbps QPPM signal format, the 3 dB cutoff frequency of

the Bessel lowpass filter should be 1.3X(650X106) = 845 MHz.

Figure 3 shows a printout of the simulation results. The waveforms in the

upper right graticule are the rectangular input pulse and the pulse output from

the preamplifier. The waveforms in the lower graticule are the filter output and

the true raised cosine pulse shape. The pulse output from the preamplifier is dis-

torted somewhat due to the limited bandwidth of the preamplifier. Nevertheless,

the pulse shape output from the Bessel lowpass filter had little improvement as

the preamplifier bandwidth was increased. It is therefore sufficient for the

preamplifier to have a bandwidth of the reciprocal of the pulsewidth. A slightly

lower preamplifier bandwidth can be compensated by a higher 3 dB cutoff fre-

quency of the Bessel lowpass filter. In practice, the :3 dB cutoff frequency of the

Bessel lowpass filter should be determined after the preamplifier is chosen.

It was also found from the simulation that the lower 3 dB cutoff frequency

due to the AC coupling should be no higher than 0.2% of the reciprocal of the

input pulsewidth. For the FSDD receiver which uses 325 Mbps QPPM signal for-

mat, the lower 3 dB cutoff frequency due to AC coupling should not exceeds

650(MHz)XO.2_o --_ 1.3 MHz. A higher cutoff frequency causes the pulses to

overshot on the falling edge and consequently causes intersymbol interference.

Figure 4 shows an implementation of the Bessel lowpass filter according to

[3]. The filter can be built with lumped components [4].
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(a). Normalized 7th order Besses Iowpass filter

(2=f3dB= 1 rad/sec., Rs=Rl=lf2).

1.0416nH 5.1128nH 8.1838nH 21.339nH

(b). Unnormalized 7th order Besses Iowpass filter

(_dB=845MHz, Rs=RI=50.Q)

Scalling: C=Cn /2=f3dsR, and L=_ R/2_f3d B

Figure 4. A Circuit diagram of a 7th order Besses

Iowpass filter [4].


